Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456494

RESUMO

Cerebellar neurons, such as GABAergic Purkinje cells (PCs), interneurons (INs) and glutamatergic granule cells (GCs) are differentiated from neural progenitors expressing proneural genes, including ptf1a, neurog1 and atoh1a/b/c. Studies in mammals previously suggested that these genes determine cerebellar neuron cell fate. However, our studies on ptf1a;neurog1 zebrafish mutants and lineage tracing of ptf1a-expressing progenitors have revealed that the ptf1a/neurog1-expressing progenitors can generate diverse cerebellar neurons, including PCs, INs and a subset of GCs in zebrafish. The precise mechanisms of how each cerebellar neuron type is specified remains elusive. We found that genes encoding the transcriptional regulators Foxp1b, Foxp4, Skor1b and Skor2, which are reportedly expressed in PCs, were absent in ptf1a;neurog1 mutants. foxp1b;foxp4 mutants showed a strong reduction in PCs, whereas skor1b;skor2 mutants completely lacked PCs, and displayed an increase in immature GCs. Misexpression of skor2 in GC progenitors expressing atoh1c suppressed GC fate. These data indicate that Foxp1b/4 and Skor1b/2 function as key transcriptional regulators in the initial step of PC differentiation from ptf1a/neurog1-expressing neural progenitors, and that Skor1b and Skor2 control PC differentiation by suppressing their differentiation into GCs.


Assuntos
Diferenciação Celular , Proteínas Correpressoras , Fatores de Transcrição Forkhead , Células de Purkinje , Peixe-Zebra , Animais , Diferenciação Celular/genética , Cerebelo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Mamíferos , Neurônios/metabolismo , Células de Purkinje/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Development ; 150(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823232

RESUMO

Neural crest cells generate numerous derivatives, including pigment cells, and are a model for studying how fate specification from multipotent progenitors is controlled. In mammals, the core gene regulatory network for melanocytes (their only pigment cell type) contains three transcription factors, Sox10, Pax3 and Mitf, with the latter considered a master regulator of melanocyte development. In teleosts, which have three to four pigment cell types (melanophores, iridophores and xanthophores, plus leucophores e.g. in medaka), gene regulatory networks governing fate specification are poorly understood, although Mitf function is considered conserved. Here, we show that the regulatory relationships between Sox10, Pax3 and Mitf are conserved in zebrafish, but the role for Mitf is more complex than previously emphasized, affecting xanthophore development too. Similarly, medaka Mitf is necessary for melanophore, xanthophore and leucophore formation. Furthermore, expression patterns and mutant phenotypes of pax3 and pax7 suggest that Pax3 and Pax7 act sequentially, activating mitf expression. Pax7 modulates Mitf function, driving co-expressing cells to differentiate as xanthophores and leucophores rather than melanophores. We propose that pigment cell fate specification should be considered to result from the combinatorial activity of Mitf with other transcription factors.


Assuntos
Oryzias , Peixe-Zebra , Animais , Redes Reguladoras de Genes , Mamíferos/genética , Melanócitos/metabolismo , Mutação , Crista Neural/metabolismo , Oryzias/genética , Oryzias/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745506

RESUMO

Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate development of new approaches to perturb cerebellar function in simpler vertebrates. Here, we used a powerful chemogenetic tool (TRPV1/capsaicin) to define the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation disrupted postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more pronounced in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically-tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

4.
Elife ; 122023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589544

RESUMO

G-protein-coupled receptors (GPCRs) transmit signals into cells depending on the G protein type. To analyze the functions of GPCR signaling, we assessed the effectiveness of animal G-protein-coupled bistable rhodopsins that can be controlled into active and inactive states by light application using zebrafish. We expressed Gq- and Gi/o-coupled bistable rhodopsins in hindbrain reticulospinal V2a neurons, which are involved in locomotion, or in cardiomyocytes. Light stimulation of the reticulospinal V2a neurons expressing Gq-coupled spider Rh1 resulted in an increase in the intracellular Ca2+ level and evoked swimming behavior. Light stimulation of cardiomyocytes expressing the Gi/o-coupled mosquito Opn3, pufferfish TMT opsin, or lamprey parapinopsin induced cardiac arrest, and the effect was suppressed by treatment with pertussis toxin or barium, suggesting that Gi/o-dependent regulation of inward-rectifier K+ channels controls cardiac function. These data indicate that these rhodopsins are useful for optogenetic control of GPCR-mediated signaling in zebrafish neurons and cardiomyocytes.


Assuntos
Miócitos Cardíacos , Canais de Potássio Corretores do Fluxo de Internalização , Animais , Peixe-Zebra , Optogenética , Neurônios , Rodopsina
5.
Elife ; 122023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589546

RESUMO

Even though microbial photosensitive proteins have been used for optogenetics, their use should be optimized to precisely control cell and tissue functions in vivo. We exploited GtCCR4 and KnChR, cation channelrhodopsins from algae, BeGC1, a guanylyl cyclase rhodopsin from a fungus, and photoactivated adenylyl cyclases (PACs) from cyanobacteria (OaPAC) or bacteria (bPAC), to control cell functions in zebrafish. Optical activation of GtCCR4 and KnChR in the hindbrain reticulospinal V2a neurons, which are involved in locomotion, induced swimming behavior at relatively short latencies, whereas activation of BeGC1 or PACs achieved it at long latencies. Activation of GtCCR4 and KnChR in cardiomyocytes induced cardiac arrest, whereas activation of bPAC gradually induced bradycardia. KnChR activation led to an increase in intracellular Ca2+ in the heart, suggesting that depolarization caused cardiac arrest. These data suggest that these optogenetic tools can be used to reveal the function and regulation of zebrafish neurons and cardiomyocytes.


Assuntos
Parada Cardíaca , Miócitos Cardíacos , Animais , Adenilil Ciclases/genética , Peixe-Zebra , Rodopsinas Microbianas , Optogenética , Neurônios
6.
J Comp Neurol ; 530(8): 1231-1246, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34729771

RESUMO

Although all vertebrate cerebella contain granule cells, Purkinje cells, and efferent neurons, the cellular arrangement and neural circuitry are highly diverse. In amniotes, cerebellar efferent neurons form clusters, deep cerebellar nuclei, lie deep in the cerebellum, and receive synaptic inputs from Purkinje cells but not granule cells. However, in the cerebellum of teleosts, the efferent neurons, called eurydendroid cells, lie near the cell bodies of Purkinje cells and receive inputs both from axons of Purkinje cells and granule cell parallel fibers. It is largely unknown how the cerebellar structure evolved in ray-finned fish (actinopterygians). To address this issue, we analyzed the cerebellum of a bichir Polypterus senegalus, one of the most basal actinopterygians. We found that the cell bodies of Purkinje cells are not aligned in a layer; incoming climbing fibers terminate mainly on the basal portion of Purkinje cells, revealing that the Polypterus cerebellum has unique features among vertebrate cerebella. Retrograde labeling and marker analyses of the efferent neurons revealed that their cell bodies lie in restricted granular areas but not as deep cerebellar nuclei in the cerebellar white matter. The efferent neurons have long dendrites like eurydendroid cells, although they do not reach the molecular layer. Our findings suggest that the efferent system of the bichir cerebellum has intermediate features between teleosts and amniote vertebrates, and provides a model to understand the basis generating diversity in actinopterygian cerebella.


Assuntos
Cerebelo , Células de Purkinje , Animais , Axônios , Peixes/anatomia & histologia , Neurônios
7.
Sci Rep ; 11(1): 23211, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853329

RESUMO

Vertebrate CMP-sialic acid synthetase (CSS), which catalyzes the synthesis of CMP-sialic acid (CMP-Sia), consists of a 28 kDa-N-domain and a 20 kDa-C-domain. The N-domain is known to be a catalytic domain; however, the significance of the C-domain still remains unknown. To elucidate the function of the C-domain at the organism level, we screened the medaka TILLING library and obtained medaka with non-synonymous mutations (t911a), or single amino acid substitutions of CSS, L304Q, in the C-domain. Prominently, most L304Q medaka was lethal within 19 days post-fertilization (dpf). L304Q young fry displayed free Sia accumulation, and impairment of sialylation, up to 8 dpf. At 8 dpf, a marked abnormality in ventricular contraction and skeletal myogenesis was observed. To gain insight into the mechanism of L304Q-induced abnormalities, L304Q was biochemically characterized. Although bacterially expressed soluble L304Q and WT showed the similar Vmax/Km values, very few soluble L304Q was detected when expressed in CHO cells in sharp contrast to the WT. Additionally, the thermostability of various mutations of L304 greatly decreased, except for WT and L304I. These results suggest that L304 is important for the stability of CSS, and that an appropriate level of expression of soluble CSS is significant for animal survival.


Assuntos
Doenças dos Peixes/genética , Proteínas de Peixes/genética , N-Acilneuraminato Citidililtransferase/genética , Oryzias/genética , Mutação Puntual , Animais , Células CHO , Cardiomiopatias/genética , Cardiomiopatias/veterinária , Cricetulus , Estabilidade Enzimática , Proteínas de Peixes/química , Modelos Moleculares , N-Acilneuraminato Citidililtransferase/química , Oryzias/fisiologia , Domínios Proteicos , Solubilidade
8.
Nat Commun ; 12(1): 6925, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836956

RESUMO

All females adopt an evolutionary conserved reproduction strategy; under unfavorable conditions such as scarcity of food or mates, oocytes remain quiescent. However, the signals to maintain oocyte quiescence are largely unknown. Here, we report that in four different species - Caenorhabditis elegans, Caenorhabditis remanei, Drosophila melanogaster, and Danio rerio - octopamine and norepinephrine play an essential role in maintaining oocyte quiescence. In the absence of mates, the oocytes of Caenorhabditis mutants lacking octopamine signaling fail to remain quiescent, but continue to divide and become polyploid. Upon starvation, the egg chambers of D. melanogaster mutants lacking octopamine signaling fail to remain at the previtellogenic stage, but grow to full-grown egg chambers. Upon starvation, D. rerio lacking norepinephrine fails to maintain a quiescent primordial follicle and activates an excessive number of primordial follicles. Our study reveals an evolutionarily conserved function of the noradrenergic signal in maintaining quiescent oocytes.


Assuntos
Divisão Celular/efeitos dos fármacos , Norepinefrina/farmacologia , Oócitos/efeitos dos fármacos , Animais , Caenorhabditis/genética , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Evolução Molecular , Feminino , Alimentos , Nutrientes , Octopamina/farmacologia , Oócitos/citologia , Oogênese , Folículo Ovariano/citologia , Folículo Ovariano/fisiologia , Inanição , Peixe-Zebra/genética
9.
Dev Growth Differ ; 63(9): 516-522, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34807452

RESUMO

SoxE-type transcription factors, Sox10 and Sox9, are key regulators of the development of neural crest cells. Sox10 specifies pigment cell, glial, and neuronal lineages, whereas Sox9 is reportedly closely associated with skeletogenic lineages in the head, but its involvement in pigment cell formation has not been investigated genetically. Thus, it is not fully understood whether or how distinctly these genes as well as their paralogs in teleosts are subfunctionalized. We have previously shown using the medaka fish Oryzias latipes that pigment cell formation is severely affected by the loss of sox10a, yet unaffected by the loss of sox10b. Here we aimed to determine whether Sox9 is involved in the specification of pigment cell lineage. The sox9b homozygous mutation did not affect pigment cell formation, despite lethality at the early larval stages. By using sox10a, sox10b, and sox9b mutations, compound mutants were established for the sox9b and sox10 genes and pigment cell phenotypes were analyzed. Simultaneous loss of sox9b and sox10a resulted in the complete absence of melanophores and xanthophores from hatchlings and severely defective iridophore formation, as has been previously shown for sox10a-/- ; sox10b-/- double mutants, indicating that Sox9b as well as Sox10b functions redundantly with Sox10a in pigment cell development. Notably, leucophores were present in sox9b-/- ; sox10a-/- and sox10a-/- ; sox10b-/- double mutants, but their numbers were significantly reduced in the sox9b-/- ; sox10a-/- mutants. These findings highlight that Sox9b is involved in pigment cell formation, and plays a more critical role in leucophore development than Sox10b.


Assuntos
Linhagem da Célula , Melanóforos , Oryzias , Fatores de Transcrição SOX9 , Animais , Crista Neural , Oryzias/genética , Oryzias/crescimento & desenvolvimento , Fatores de Transcrição SOX9/genética
10.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33952613

RESUMO

When animals repeatedly receive a combination of neutral conditional stimulus (CS) and aversive unconditional stimulus (US), they learn the relationship between CS and US, and show conditioned fear responses after CS. They show passive responses such as freezing or panic movements (classical or Pavlovian fear conditioning), or active behavioral responses to avoid aversive stimuli (active avoidance). Previous studies suggested the roles of the cerebellum in classical fear conditioning but it remains elusive whether the cerebellum is involved in active avoidance conditioning. In this study, we analyzed the roles of cerebellar neural circuits during active avoidance in adult zebrafish. When pairs of CS (light) and US (electric shock) were administered to wild-type zebrafish, about half of them displayed active avoidance. The expression of botulinum toxin, which inhibits the release of neurotransmitters, in cerebellar granule cells (GCs) or Purkinje cells (PCs) did not affect conditioning-independent swimming behaviors, but did inhibit active avoidance conditioning. Nitroreductase (NTR)-mediated ablation of PCs in adult zebrafish also impaired active avoidance. Furthermore, the inhibited transmission of GCs or PCs resulted in reduced fear-conditioned Pavlovian fear responses. Our findings suggest that the zebrafish cerebellum plays an active role in active avoidance conditioning.


Assuntos
Condicionamento Clássico , Peixe-Zebra , Animais , Aprendizagem da Esquiva , Cerebelo , Condicionamento Operante , Medo
11.
Dev Dyn ; 250(11): 1618-1633, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33987914

RESUMO

BACKGROUND: Although the cell cycle and cell differentiation should be coordinately regulated to generate a variety of neurons in the brain, the molecules that are involved in this coordination still remain largely unknown. In this study, we analyzed the roles of a nuclear protein Cfdp1, which is thought to be involved in chromatin remodeling, in zebrafish neurogenesis. RESULTS: Zebrafish cfdp1 mutants maintained the progenitors of granule cells (GCs) in the cerebellum, but showed defects in their differentiation to GCs. cfdp1 mutants showed an increase in phospho-histone 3 (pH 3)-positive cells and apoptotic cells, as well as a delayed cell cycle transition from the G2 to the M phase in the cerebellum. The inhibition of tp53 prevented apoptosis but not GC differentiation in the cfdp1 mutant cerebellum. A similar increase in apoptotic cells and pH 3-positive cells, and defective cell differentiation, were observed in the cfdp1 mutant retina. Although mitotic spindles formed, mitosis was blocked before anaphase in both the cerebellum and retina of cfdp1 mutant larvae. Furthermore, expression of the G2/mitotic-specific cyclin B1 gene increased in the cfdp1 mutant cerebellum. CONCLUSIONS: Our findings suggest that Cfdp1 regulates the cell cycle of neural progenitors, thereby promoting neural differentiation in the brain.


Assuntos
Retina , Peixe-Zebra , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Cerebelo , Mitose , Neurogênese/genética , Peixe-Zebra/genética
12.
Development ; 147(19)2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32928905

RESUMO

Neurons in the inferior olivary nuclei (IO neurons) send climbing fibers to Purkinje cells to elicit functions of the cerebellum. IO neurons and Purkinje cells are derived from neural progenitors expressing the proneural gene ptf1a In this study, we found that the homeobox gene gsx2 was co-expressed with ptf1a in IO progenitors in zebrafish. Both gsx2 and ptf1a zebrafish mutants showed a strong reduction or loss of IO neurons. The expression of ptf1a was not affected in gsx2 mutants, and vice versa. In IO progenitors, the ptf1a mutation increased apoptosis whereas the gsx2 mutation did not, suggesting that ptf1a and gsx2 are regulated independently of each other and have distinct roles. The fibroblast growth factors (Fgf) 3 and 8a, and retinoic acid signals negatively and positively, respectively, regulated gsx2 expression and thereby the development of IO neurons. mafba and Hox genes are at least partly involved in the Fgf- and retinoic acid-dependent regulation of IO neuronal development. Our results indicate that gsx2 mediates the rostro-caudal positional signals to specify the identity of IO neurons from ptf1a-expressing neural progenitors.


Assuntos
Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
13.
Proc Natl Acad Sci U S A ; 117(29): 17330-17337, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32632015

RESUMO

Purkinje cells, the principal neurons of cerebellar computations, are believed to comprise a uniform neuronal population of cells, each with similar functional properties. Here, we show an undiscovered heterogeneity of adult zebrafish Purkinje cells, revealing the existence of anatomically and functionally distinct cell types. Dual patch-clamp recordings showed that the cerebellar circuit contains all Purkinje cell types that cross-communicate extensively using chemical and electrical synapses. Further activation of spinal central pattern generators (CPGs) revealed unique phase-locked activity from each Purkinje cell type during the locomotor cycle. Thus, we show intricately organized Purkinje cell networks in the adult zebrafish cerebellum that encode the locomotion rhythm differentially, and we suggest that these organizational properties may also apply to other cerebellar functions.


Assuntos
Locomoção/fisiologia , Células de Purkinje/fisiologia , Peixe-Zebra/fisiologia , Potenciais de Ação , Animais , Comportamento Animal , Encéfalo , Geradores de Padrão Central/fisiologia , Cerebelo/fisiologia , Análise por Conglomerados , Fenômenos Eletrofisiológicos , Feminino , Masculino , Modelos Animais , Medula Espinal
14.
ACS Omega ; 5(18): 10602-10609, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32426619

RESUMO

The choanoflagellate Salpingoeca rosetta contains a chimeric rhodopsin protein composed of an N-terminal rhodopsin (Rh) domain and a C-terminal cyclic nucleotide phosphodiesterase (PDE) domain. The Rh-PDE enzyme (SrRh-PDE), which decreases the concentrations of cyclic nucleotides such as cGMP and cAMP in light, is a useful tool in optogenetics. Recently, eight additional Rh-PDE enzymes were found in choanoflagellate species, four from Choanoeca flexa and the other four from other species. In this paper, we studied the molecular properties of these new Rh-PDEs, which were compared with SrRh-PDE. Upon expression in HEK293 cells, four Rh-PDE proteins, including CfRh-PDE2 and CfRh-PDE3, exhibited no PDE activity when assessed by in-cell measurements and in vitro HPLC analysis. On the other hand, CfRh-PDE1 showed light-dependent PDE activity toward cGMP, which absorbed maximally at 491 nm. Therefore, CfRh-PDE1 is presumably responsible for colony inversion in C. flexa by absorbing blue-green light. The molecular properties of MrRh-PDE were similar to those of SrRh-PDE, although the λmax of MrRh-PDE (516 nm) was considerably red-shifted from that of SrRh-PDE (492 nm). One Rh-PDE, AsRh-PDE, did not contain the retinal-binding Lys at TM7 and showed cAMP-specific PDE activity both in the dark and light. These results provide mechanistic insight into rhodopsin-mediated, light-dependent regulation of second-messenger levels in eukaryotic microbes.

15.
eNeuro ; 6(5)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481398

RESUMO

Mitochondria are abundantly detected at the growth cone, the dynamic distal tip of developing axons that directs growth and guidance. It is, however, poorly understood how mitochondrial dynamics relate to growth cone behavior in vivo, and which mechanisms are responsible for anchoring mitochondria at the growth cone during axon pathfinding. Here, we show that in retinal axons elongating along the optic tract in zebrafish, mitochondria accumulate in the central area of the growth cone and are occasionally observed in filopodia extending from the growth cone periphery. Mitochondrial behavior at the growth cone in vivo is dynamic, with mitochondrial positioning and anterograde transport strongly correlating with growth cone behavior and axon outgrowth. Using novel zebrafish mutant lines that lack the mitochondrial anchoring proteins Syntaphilin a and b, we further show that Syntaphilins contribute to mitochondrial immobilization at the growth cone. Syntaphilins are, however, not required for proper growth cone morphology and axon growth in vivo, indicating that Syntaphilin-mediated anchoring of mitochondria at the growth cone plays only a minor role in elongating axons.


Assuntos
Axônios/fisiologia , Cones de Crescimento/fisiologia , Proteínas de Membrana/fisiologia , Mitocôndrias/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Crescimento Neuronal/fisiologia , Animais , Animais Geneticamente Modificados , Peixe-Zebra
16.
Dev Biol ; 455(2): 393-408, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31323192

RESUMO

The cerebellum and the cerebellum-like structure in the mesencephalic tectum in zebrafish contain multiple cell types, including principal cells (i.e., Purkinje cells and type I neurons) and granule cells, that form neural circuits in which the principal cells receive and integrate inputs from granule cells and other neurons. It is largely unknown how these cells are positioned and how neural circuits form. While Reelin signaling is known to play an important role in cell positioning in the mammalian brain, its role in the formation of other vertebrate brains remains elusive. Here we found that zebrafish with mutations in Reelin or in the Reelin-signaling molecules Vldlr or Dab1a exhibited ectopic Purkinje cells, eurydendroid cells (projection neurons), and Bergmann glial cells in the cerebellum, and ectopic type I neurons in the tectum. The ectopic Purkinje cells and type I neurons received aberrant afferent fibers in these mutants. In wild-type zebrafish, reelin transcripts were detected in the internal granule cell layer, while Reelin protein was localized to the superficial layer of the cerebellum and the tectum. Laser ablation of the granule cell axons perturbed the localization of Reelin, and the mutation of both kif5aa and kif5ba, which encode major kinesin I components in the granule cells, disrupted the elongation of granule cell axons and the Reelin distribution. Our findings suggest that in zebrafish, (1) Reelin is transported from the granule cell soma to the superficial layer by axonal transport; (2) Reelin controls the migration of neurons and glial cells from the ventricular zone; and (3) Purkinje cells and type I neurons attract afferent axons during the formation of the cerebellum and the cerebellum-like structure.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Cerebelo/embriologia , Proteínas da Matriz Extracelular/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Serina Endopeptidases/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Sistemas CRISPR-Cas , Moléculas de Adesão Celular Neuronais/genética , Movimento Celular , Cerebelo/citologia , Proteínas da Matriz Extracelular/genética , Cinesinas/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Células de Purkinje/citologia , Proteína Reelina , Serina Endopeptidases/genética , Transdução de Sinais , Peixe-Zebra/anatomia & histologia , Proteínas de Peixe-Zebra/genética
17.
Front Neural Circuits ; 13: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068795

RESUMO

The cerebellum is involved in some forms of motor coordination and learning, and in cognitive and emotional functions. To elucidate the functions of the cerebellum, it is important to unravel the detailed connections of the cerebellar neurons. Although the cerebellar neural circuit structure is generally conserved among vertebrates, it is not clear whether the cerebellum receives and processes the same or similar information in different vertebrate species. Here, we performed monosynaptic retrograde tracing with recombinant rabies viruses (RV) to identify the afferent connections of the zebrafish cerebellar neurons. We used a G-deleted RV that expressed GFP. The virus was also pseudotyped with EnvA, an envelope protein of avian sarcoma and leucosis virus (ALSV-A). For the specific infection of cerebellar neurons, we expressed the RV glycoprotein (G) gene and the envelope protein TVA, which is the receptor for EnvA, in Purkinje cells (PCs) or granule cells (GCs), using the promoter for aldolase Ca (aldoca) or cerebellin 12 (cbln12), respectively. When the virus infected PCs in the aldoca line, GFP was detected in the PCs' presynaptic neurons, including GCs and neurons in the inferior olivary nuclei (IOs), which send climbing fibers (CFs). These observations validated the RV tracing method in zebrafish. When the virus infected GCs in the cbln12 line, GFP was again detected in their presynaptic neurons, including neurons in the pretectal nuclei, the nucleus lateralis valvulae (NLV), the central gray (CG), the medial octavolateralis nucleus (MON), and the descending octaval nucleus (DON). GFP was not observed in these neurons when the virus infected PCs in the aldoca line. These precerebellar neurons generally agree with those reported for other teleost species and are at least partly conserved with those in mammals. Our results demonstrate that the RV system can be used for connectome analyses in zebrafish, and provide fundamental information about the cerebellar neural circuits, which will be valuable for elucidating the functions of cerebellar neural circuits in zebrafish.


Assuntos
Vias Aferentes/anatomia & histologia , Cerebelo/anatomia & histologia , Conectoma/métodos , Animais , Animais Geneticamente Modificados , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Neurônios/citologia , Vírus da Raiva/genética , Peixe-Zebra
18.
Proc Natl Acad Sci U S A ; 115(44): 11310-11315, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30322939

RESUMO

Lower vertebrate pineal organs discriminate UV and visible light. Such color discrimination is typically considered to arise from antagonism between two or more spectrally distinct opsins, as, e.g., human cone-based color vision relies on antagonistic relationships between signals produced by red-, green-, and blue-cone opsins. Photosensitive pineal organs contain a bistable opsin (parapinopsin) that forms a signaling-active photoproduct upon UV exposure that may itself be returned to the signaling-inactive "dark" state by longer-wavelength light. Here we show the spectrally distinct parapinopsin states (with antagonistic impacts on signaling) allow this opsin alone to provide the color sensitivity of this organ. By using calcium imaging, we show that single zebrafish pineal photoreceptors held under a background light show responses of opposite signs to UV and visible light. Both such responses are deficient in zebrafish lacking parapinopsin. Expressing a UV-sensitive cone opsin in place of parapinopsin recovers UV responses but not color opponency. Changes in the spectral composition of white light toward enhanced UV or visible wavelengths respectively increased vs. decreased calcium signal in parapinopsin-sufficient but not parapinopsin-deficient photoreceptors. These data reveal color opponency from a single kind of bistable opsin establishing an equilibrium-like mixture of the two states with different signaling abilities whose fractional concentrations are defined by the spectral composition of incident light. As vertebrate visual color opsins evolved from a bistable opsin, these findings suggest that color opponency involving a single kind of bistable opsin might have been a prototype of vertebrate color opponency.


Assuntos
Visão de Cores/fisiologia , Glândula Pineal/fisiologia , Opsinas de Bastonetes/fisiologia , Peixe-Zebra/fisiologia , Animais , Cor , Proteínas de Peixes/metabolismo , Luz , Glândula Pineal/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Opsinas de Bastonetes/metabolismo , Raios Ultravioleta , Peixe-Zebra/metabolismo
19.
PLoS Genet ; 14(4): e1007260, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29621239

RESUMO

Mechanisms generating diverse cell types from multipotent progenitors are fundamental for normal development. Pigment cells are derived from multipotent neural crest cells and their diversity in teleosts provides an excellent model for studying mechanisms controlling fate specification of distinct cell types. Zebrafish have three types of pigment cells (melanocytes, iridophores and xanthophores) while medaka have four (three shared with zebrafish, plus leucophores), raising questions about how conserved mechanisms of fate specification of each pigment cell type are in these fish. We have previously shown that the Sry-related transcription factor Sox10 is crucial for fate specification of pigment cells in zebrafish, and that Sox5 promotes xanthophores and represses leucophores in a shared xanthophore/leucophore progenitor in medaka. Employing TILLING, TALEN and CRISPR/Cas9 technologies, we generated medaka and zebrafish sox5 and sox10 mutants and conducted comparative analyses of their compound mutant phenotypes. We show that specification of all pigment cells, except leucophores, is dependent on Sox10. Loss of Sox5 in Sox10-defective fish partially rescued the formation of all pigment cells in zebrafish, and melanocytes and iridophores in medaka, suggesting that Sox5 represses Sox10-dependent formation of these pigment cells, similar to their interaction in mammalian melanocyte specification. In contrast, in medaka, loss of Sox10 acts cooperatively with Sox5, enhancing both xanthophore reduction and leucophore increase in sox5 mutants. Misexpression of Sox5 in the xanthophore/leucophore progenitors increased xanthophores and reduced leucophores in medaka. Thus, the mode of Sox5 function in xanthophore specification differs between medaka (promoting) and zebrafish (repressing), which is also the case in adult fish. Our findings reveal surprising diversity in even the mode of the interactions between Sox5 and Sox10 governing specification of pigment cell types in medaka and zebrafish, and suggest that this is related to the evolution of a fourth pigment cell type.


Assuntos
Linhagem da Célula , Melanócitos/metabolismo , Oryzias/genética , Pigmentação/genética , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXE/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Alelos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Melanócitos/citologia , Crista Neural/metabolismo , Fatores de Transcrição SOXD/metabolismo , Fatores de Transcrição SOXE/metabolismo , Proteínas de Peixe-Zebra/metabolismo
20.
BMC Biol ; 16(1): 40, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661185

RESUMO

BACKGROUND: Conventionally, comparison among amniotes - birds, mammals, and reptiles - has often been approached through analyses of mammals and, for comparison, birds. However, birds are morphologically and physiologically derived and, moreover, some parts of their genomes are recognized as difficult to sequence and/or assemble and are thus missing in genome assemblies. Therefore, sequencing the genomes of reptiles would aid comparative studies on amniotes by providing more comprehensive coverage to help understand the molecular mechanisms underpinning evolutionary changes. RESULTS: Herein, we present the whole genome sequences of the Madagascar ground gecko (Paroedura picta), a promising study system especially in developmental biology, and used it to identify changes in gene repertoire across amniotes. The genome-wide analysis of the Madagascar ground gecko allowed us to reconstruct a comprehensive set of gene phylogenies comprising 13,043 ortholog groups from diverse amniotes. Our study revealed 469 genes retained by some reptiles but absent from available genome-wide sequence data of both mammals and birds. Importantly, these genes, herein collectively designated as 'elusive' genes, exhibited high nucleotide substitution rates and uneven intra-genomic distribution. Furthermore, the genomic regions flanking these elusive genes exhibited distinct characteristics that tended to be associated with increased gene density, repeat element density, and GC content. CONCLUSION: This highly continuous and nearly complete genome assembly of the Madagascar ground gecko will facilitate the use of this species as an experimental animal in diverse fields of biology. Gene repertoire comparisons across amniotes further demonstrated that the fate of a duplicated gene can be affected by the intrinsic properties of its genomic location, which can persist for hundreds of millions of years.


Assuntos
Duplicação Gênica/genética , Genoma/genética , Lagartos/classificação , Lagartos/genética , Animais , Composição de Bases/genética , Evolução Biológica , Evolução Molecular , Madagáscar , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...